Regulation of target gene expression as a breakthrough direction in treatment of cardiovascular diseases: focus on RNA therapy
Abstract
Recent advances in the field of obtaining, purification and cellular delivery of RNA into the patient´s body have allowed to develop RNA-based therapeutic tools for treatment of a wide range of diseases, including cardiovascular ones. RNA therapy is a new, rapidly developing area of medicine that uses various RNA molecules as therapeutic agent. These medications are cost-effective, relatively easy to manufacture and can treat previously untreatable pathological processes. Currently, all RNA medications are divided into five groups and include antisense oligonucleotides (ASO), small interfering RNAs (siRNAs), microRNAs (miRNAs), RNA aptamers and mRNAs. RNA therapeutic drugs are designed to regulate the activity of genes and, depending on the chosen strategy, can replace, supplement, correct, suppress or eliminate the expression of the target gene. This mini review considers the challenges and advantages associated with the use of RNA-based medications, various approaches to their delivery to the patient´s cells, as well as the mechanisms of action of selected RNA medications. In addition, the review provides information on effectiveness of selected RNA-based drugs that are currently undergoing clinical trials or have already received regulatory approval.
About the Authors
K. A. AitbaevKyrgyzstan
I. T. Murkamilov
Kyrgyzstan
V. V. Fomin
Russian Federation
Z. F. Yusupova
Kyrgyzstan
T. F. Yusupova
Kyrgyzstan
F. A. Yusupov
Kyrgyzstan
References
1. Cardiovascular diseases (CVDs). Available at: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
2. Yancy Clyde W., Jessup M., Bozkurt B. et al. ACC/AHA/ HESA focuced update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure. J. Am. Coll. Cardiol. 2017; 70: 776—803.
3. Gupta S. K., Foinquinos A., Thum S. et al. Preclinical development of a microRNA — based therapy for elderly patients with myocardial infarction. J. Am. Coll. Cardiol. 2016; 68: 1557—71.
4. Ellington A. D., Szostak J. W. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990; 346 (6287): 818—22. Available at: https://doi.org/10.1038/346818a0.
5. Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990; 249 (4968): 505—10. Available at: https://doi.org/10.1126/science.2200121.
6. Wolff J. A., Malone R. W., Williams P. et al. Direct gene transfer into mouse muscle in vivo. Science. 1990; 247 (4949 Pt. 1): 1465—8. Available at: https://doi.org/10.1126/science.1690918.
7. Jirikowski G. F., Sanna P. P., Maciejewski-Lenoir D., Bloom F. E. Reversal of diabetes insipidus in Brattleboro rats: intrahypothalamic injection of vasopressin mRNA. Science. 1992; 255 (5047): 996—8. Available at: doi:10.1126/science.1546298.
8. Damase T. R., Sukhovershin R., Boada C. et al. The limitless future of RNA therapeutics. Front Bioeng Biotechnol. 2021; 9: 628137. Available at: https://doi.org/10.3389/fbioe.2021.628137.
9. Kulkarni J. A., Witzigmann D., Thomson S. B. et al. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 2021; 16 (6): 630—43. Available at: https://doi.org/10.1038/s41565-021-00898-0.
10. Kariko K., Buckstein M., Ni H., Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005; 23 (2): 165—75. Available at: doi:10.1016/j.immuni.2005.06.008.
11. Sahin U., Kariko K., Tureci O. mRNA-based therapeutics — developing a new class of drugs. Nat. Rev. Drug. Discov. 2014; 13(10): 759—80. Available at: https://doi.org/10.1038/nrd4278.
12. Polack F. P., Thomas S. J., Kitchin N. et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020; 383(27): 2603—15. Available at: https://doi.org/10.1056/NEJMoa2034577.
13. Baden L. R., El Sahly H. M., Essink B. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2021; 384 (5): 403—16. Available at: https://doi.org/10.1056/NEJMoa2035389.
14. Crooke S. T., Baker B. F., Crooke R. M., Liang X. H. Antisense technology: an overview and prospectus. Nat. Rev. Drug. Discov. 2021; 20 (6): 427—53. Available at: https://doi.org/10.1038/s41573-021-00162-z.
15. Crooke S. T., Liang X. H., Baker B. F., Crooke R. M. Antisense technology: a review. J. Biol. Chem. 2021; 296: 100416. Available at: https://doi.org/10.1016/j.jbc.2021.100416.
16. Baker B. F., Lot S. S., Condon T. P. et al. 22-O-(2-Methoxy)ethyl-modified anti-intercellular adhesion molecule 1 (ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells. J. Biol. Chem. 1997; 272 (18): 11994—2000. Available at: https://doi.org/10.1074/jbc.272.18.11994.
17. Hua Y., Vickers T. A., Baker B. F. et al. Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol. 2007; 5(4): e73. Available at: https://doi.org/10.1371/journal.pbio.0050073.
18. Minshull J., Hunt T. The use of single-stranded DNA and RNase H to promote quantitative ‘hybrid arrest of translation´ of mRNA/DNA hybrids in reticulocyte lysate cell-free translations. Nucleic. Acids Res. 1986; 14 (16): 6433—51. Available at: https://doi.org/10.1093/nar/14.16.6433.
19. Roberts T. C., Langer R., Wood M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 2020; 19 (10): 673—94. Available at: https://doi.org/10.1038/s41573-020-0075-7.
20. Goodchild J., Kim B., Zamecnik P. C. The clearance and degradation of oligodeoxynucleotides following intravenous injection into rabbits. Antisense Res. Dev. 1991; 1 (2): 153—60. Available at: https://doi.org/10.1089/ard.1991.1.153.
21. Crooke S. T., Seth P. P., Vickers T. A., Liang X. H. The interaction of phosphorothioate-containing RNA targeted drugs with proteins is a critical determinant of the therapeutic effects of these agents. J. Am. Chem. Soc. 2020; 142 (35): 14754—71. Available at: https://doi.org/10.1021/jacs.0c04928.
22. Tavori H., Christian D., Minnier J. et al. PCSK9 association with lipoprotein(a). Circ. Res. 2016; 119 (1): 29—35. Available at: https://doi.org/10.1161/CIRCRESAHA.116.308811.
23. Lim G. B. Dyslipidaemia: ANGPTL3: a therapeutic target for atherosclerosis. Nat. Rev. Cardiol. 2017; 14 (7): 381. Available at: https://doi.org/10.1038/nrcardio.2017.91.
24. Tsimikas S. A test in context: lipoprotein(a): diagnosis, prognosis, controversies, and emerging therapies. J. Am. Col.l Cardiol. 2017; 69(6): 692—711. Available at: https://doi.org/10.1016/j.jacc.2016.11.042.
25. Raal F. J., Santos R. D., Blom D. J. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010; 375 (9719): 998— 1006. Available at: https://doi.org/10.1016/S0140-6736(10)60284-X.
26. Geary R. S., Baker B. F., Crooke S. T. Clinical and preclinical pharmacokinetics and pharmacodynamics of mipomersen (kynamro ((R)): a second-generation antisense oligonucleotide inhibitor of apolipoprotein B. Clin. Pharmacokinet. 2015; 54 (2): 133—46. Available at: https://doi.org/10.1007/s40262-014-0224-4.
27. Kastelein J. J., Wedel M. K., Baker B. F. et al. Potent reduction of apolipoprotein B and low-density lipoprotein cholesterol by short-term administration of an antisense inhibitor of apolipoprotein B. Circulation. 2006; 114 (16): 1729—35. Available at: https://doi.org/10.1161/CIRCULATIONAHA.105.606442.
28. Laina A., Gatsiou A., Georgiopoulos G. et al. RNA therapeutics in cardiovascular precision medicine. Front Physiol. 2018; 9: 953. Available at: https://doi.org/10.3389/fphys.2018.00953.
29. Thomas G. S., Cromwell W. C., Ali S. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, reduces atherogenic lipoproteins in patients with severe hypercholesterolemia at high cardiovascular risk: a randomized, double-blind, placebo-controlled trial. J. Am. Coll. Cardiol. 2013; 62 (23): 2178—84. Available at: https://doi.org/10.1016/j.jacc.2013.07.081.
30. Swayze E. E., Siwkowski A. M., Wancewicz E. V. et al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic. Acids Res. 2007; 35 (2): 687—700. Available at: https://doi.org/10.1093/nar/gkl1071.
31. Visser M. E., Wagener G., Baker B. F. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, lowers low-density lipoprotein cholesterol in high-risk statin-intolerant patients: a randomized, double-blind, placebo-controlled trial. Eur. Heart J. 2012; 33 (9): 1142—9. Available at: https://doi.org/10.1093/eurheartj/ehs023.
32. Duell P. B., Santos R. D., Kirwan B. A. et al. Long-term mipomersen treatment is associated with a reduction in cardiovascular events in patients with familial hypercholesterolemia. J. Clin. Lipidol. 2016; 10 (4): 1011—21. Available at: https://doi.org/10.1016/j.jacl.2016.04.013.
33. Fogacci F., Ferri N., Toth P. P. et al. Efficacy and safety of mipomersen: a systematic review and meta-analysis of randomized clinical trials. Drugs. 2019; 79 (7): 751—66. Available at: https://doi.org/10.1007/s40265-019-01114-z.
34. Ioanna Gouni-Berthold, Alexander V. J., Yang Q. et al. Efficacy and safety of volanesorsen in patients with multifactorial chylomicronaemia (COMPASS): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Diabet Endocrinol. 2021; 9 (5): 264—75. Available at: https://doi.org/10.1016/S2213-8587(21)00046-2.
35. Crooke S. T., Witztum J. L., Bennett C. F., Baker B. F. RNA-targeted therapeutics. Cell. Metab. 2019; 29(2): 501. Available at: https://doi.org/10.1016/j.cmet.2019.01.001.
36. Witztum J. L., Gaudet D., Freedman S. D. et al. Volanesorsen and triglyceride levels in familial chylomicronemia syndrome. N. Engl. J. Med. 2019; 381 (6): 531—42. Available at: https://doi.org/10.1056/NEJMoa1715944.
37. Gaudet D., Digenio A., Alexander V. et al. The approach study: a randomized, double-blind, placebo-controlled, phase 3 study of volanesorsen administered subcutaneously to patients with familial chylomicronemia syndrome (FCS). Atherosclerosis. 2017; 263: e10-e. Available at: https://doi.org/10.1016/j.atherosclerosis.2017.06.059.
38. Tremblay K., Brisson D., Gaudet D. Natural history and gene expression signature of platelet count in lipoprotein lipase deficiency. Atherosclerosis. 2017; 263: e100. Available at: https://doi.org/10.1016/j.atherosclerosis.2017.06.325.
39. Paik J., Duggan S. Volanesorsen: first global approval. Drugs. 2019; 79 (12): 1349—54. Available at: https://doi.org/10.1007/s40265-019-01168-z.
40. Nusinersen (Spinraza) for spinal muscular atrophy. Med. Lett. Drugs. Ther. 2017; 59 (1517): 50—2.
41. Golodirsen (Vyondys 53) for Duchenne muscular dystrophy. Med. Lett. Drugs. Ther. 2020; 62 (1603): 119—20.
42. Keam S. J. Inotersen: first global approval. Drugs. 2018; 78 (13): 1371—6. Available at: https://doi.org/10.1007/s40265-018-0968-5.
43. Benson M. D. Inotersen treatment for ATTR amyloidosis. Amyloid. 2019; 26 (Sup1.): 27—8. Available at: https://doi.org/10.1080/13506129.2019.1582497.
44. Elbashir S. M., Harborth J., Lendeckel W. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001; 411 (6836): 494—8. Available at: https://doi.org/10.1038/35078107.
45. Valencia-Sanchez M. A., Liu J., Hannon G. J., Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006; 20 (5): 515—24. Available at: https://doi.org/10.1101/gad.1399806.
46. Lam J. K., Chow M. Y., Zhang Y., Leung S. W. siRNA versus miRNA as therapeutics for gene silencing. Mol. Ther Nucleic. Acids. 2015; 4: e252. Available at: https://doi.org/10.1038/mtna.2015.23.
47. Huntzinger E., Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 2011; 12 (2): 99—110. Available at: https://doi.org/10.1038/nrg2936.
48. Zhang H., Kolb F. A., Jaskiewicz L. et al. Single processing center models for human Dicer and bacterial RNase III. Cell. 2004; 118 (1): 57—68. Available at: https://doi.org/10.1016/j.cell.2004.06.017.
49. Bernstein E., Caudy A. A., Hammond S. M., Hannon G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001; 409 (6818): 363—6. Available at: https://doi.org/10.1038/35053110.
50. Scherer L. J., Rossi J. J. Approaches for the sequence-specific knockdown of mRNA. Nat. Biotechnol. 2003; 21 (12): 1457—65. Available at: https://doi.org/10.1038/nbt915.
51. Meister G., Landthaler M., Patkaniowska A. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004; 15 (2): 185—97. Available at: https://doi.org/10.1016/j.molcel.2004.07.007.
52. Lamb Y. N. Inclisiran: first approval. Drugs. 2021; 81 (3): 389—95. Available at: https://doi.org/10.1007/s40265-021-01473-6.
53. Administration USFDA. FDA approves add-on therapy to lower cholesterol among certain high-risk adults. FDA Archive. 2021. Available at: doi:https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-add-therapy-lower-cholesterol-among-certain-high-risk-adults.
54. Nair J. K., Willoughby J. L., Chan A. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 2014; 136 (49): 16958—61. Available at: https://doi.org/10.1021/ja505986a.
55. Raal F. J., Kallend D., Ray K. K. et al. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N. Engl. J. Med. 2020; 382 (16): 1520—30. Available at: https://doi.org/10.1056/NEJMoa1913805.
56. Rupaimoole R., Slack F. J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug. Discov. 2017; 16 (3): 203—22. Available at: https://doi.org/10.1038/nrd.2016.246.
57. Treiber T., Treiber N., Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell. Biol. 2019; 20 (1): 5—20. Available at: https://doi.org/10.1038/s41580-018-0059-1.
58. O´Brien J., Hayder H., Zayed Y., Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018; 9: 402. Available at: https://doi.org/10.3389/fendo.2018.00402.
59. Vasudevan S. Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA. 2012; 3 (3): 311—30. Available at: https://doi.org/10.1002/wrna.121.
60. Winkle M., El-Daly S. M., Fabbri M., Calin G. A. Noncoding RNA therapeutics — challenges and potential solutions. Nat. Rev. Drug. Discov. 2021; 20 (8): 629—51. Available at: https://doi.org/10.1038/s41573-021-00219-z.
61. Krutzfeldt J., Rajewsky N., Braich R. et al. Silencing of microRNAs in vivo with ‘antagomirs´. Nature. 2005; 438 (7068): 685—9. Available at: https://doi.org/10.1038/nature04303.
62. Orom U. A., Kauppinen S., Lund A. H. LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene. 2006; 372: 137—41. Available at: https://doi.org/10.1016/j.gene.2005.12.031.
63. Li Z., Rana T. M. Therapeutic targeting of microRNAs: current status and future challenges. Nat. Rev. Drug. Discov. 2014; 13(8): 622—38. Available at: https://doi.org/10.1038/nrd4359.
64. Bader A. G., Brown D., Stoudemire J., Lammers P. Developing therapeutic microRNAs for cancer. Gene Ther. 2011; 18 (12): 1121—6. Available at: https://doi.org/10.1038/gt.2011.79.
65. Zhou L. Y., Qin Z., Zhu Y. H. et al. Current RNA-based therapeutics in clinical trials. Curr. Gene Ther. 2019; 19 (3): 172—96. Available at: https://doi.org/10.2174/1566523219666190719100526.
66. Zhou J., Bobbin M. L., Burnett J. C., Rossi J. J. Current progress of RNA aptamer-based therapeutics. Front Genet. 2012; 3: 234. Available at: https://doi.org/10.3389/fgene.2012.00234.
67. Talap J., Zhao J., Shen M. et al. Recent advances in therapeutic nucleic acids and their analytical methods. J. Pharm. Biomed. Anal. 2021; 206: 114368. Available at: https://doi.org/10.1016/j.jpba.2021.114368.
68. Keefe A. D., Pai S., Ellington A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 2010; 9 (7): 537—50. Available at: https://doi.org/10.1038/nrd3141.
69. Vinores S. A. Pegaptanib in the treatment of wet, age-related macular degeneration. Int. J. Nanomedicine. 2006; 1 (3): 263—8.
70. Odeh F., Nsairat H., Alshaer W. et al. Aptamers chemistry: chemical modifications and conjugation strategies. Molecules. 2019; 25 (1). Available at: https://doi.org/10.3390/molecules25010003.
71. Kovacevic K. D., Greisenegger S., Langer A. et al. The aptamer BT200 blocks von Willebrand factor and platelet function in blood of stroke patients. Sci. Rep. 2021; 11 (1): 3092. Available at: https://doi.org/10.1038/s41598-021-82747-7.
72. Zangi L., Lui K. O., von Gise A. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 2013; 31 (10): 898—907. Available at: https://doi.org/10.1038/nbt.2682.
73. Zimmermann O., Homann J. M., Bangert A. et al. Successful use of mRNA-nucleofection for overexpression of interleukin-10 in murine monocytes/macrophages for anti-inflammatory therapy in a murine model of autoimmune myocarditis. J. Am. Heart. Assoc. 2012; 1 (6): e003293. Available at: https://doi.org/10.1161/JAHA.112.003293.
74. Gan L. M., Lagerstrom-Fermer M., Carlsson L. G. et al.: Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes. Nat. Commun. 2019. Available at: https://doi.org/10.1038/s41467-019-08852-4.
75. Anttila V., Saraste A., Knuuti J. et al. Synthetic mRNA Encoding VEGF-A in Patients Undergoing Coronary Artery Bypass Grafting: Design of a Phase 2a Clinical Trial. Mol. Ther — Methods Clin. Dev. 2020. Available at: https://doi.org/10.1016/j.omtm.2020.05.030.
76. Collen A., Bergenhem N., Carlsson L. et al. VEGFA in RNA for regenerative treatment of heart failure. Nat. Rev. Drug Discovery. 2022; 21: 79—80. Available at: https://doi.org/10.1038/s41573-021-00355-6.
Review
For citations:
Aitbaev K.A., Murkamilov I.T., Fomin V.V., Yusupova Z.F., Yusupova T.F., Yusupov F.A. Regulation of target gene expression as a breakthrough direction in treatment of cardiovascular diseases: focus on RNA therapy. Healthcare. 2024;(1):34-43. (In Russ.)