T-cell mechnisms of immunity during COVID-19: changes in the bone marrow, thymus, lymphocyte subpopulations, assessment of function
Abstract
The purpose of this study is to review the scientific literature of recent years on the problem of SARS-CoV-2 infection — genetic variability of the pathogen, organs and cells of the immune system, assessment of function and methods of correction. The problem of SARS-CoV-2 infection, which arose at the end of 2019 in China(Wuhan) and developed into a pandemic, is a pressing problem in 2024. It is important to understand not only the mechanisms of infection and development of the disease, but also to develop effective measures and drugs for prevention. This requires genomic monitoring of the pathogen to assess mutational changes that help evade the T-cell immune response. The molecular-genetic mechanisms of this phenomenon are not fully disclosed. Viruses implement strategies to evade immune factors in a number of ways: a) by shielding surface antigens by adding molecules of complex glycans: b) secretion of fruncated viral glicoproteins that have common epitopes with fragments of the viral spikeS protein; c) blockade of the complement system. Although the main target of the virus is the immune system(bone marrow,thymus, other lymphoid formation, subpopulation of cells), the virus attacks almost all organs and systems of the body(lungs, blood vessels, of the heart, brain, kidneys, pancreas, gonads). Discusses of the diversity of T-lymphocytes subsets, including effector T-cells. Molecular recognition of antigens, thymic injury/ recovery and assessment of T-cell-specific immunity. The difficulties in assessing the effectiveness of a protective specific T-cell immune response are considered.
About the Authors
L. P. TitovRussian Federation
M. O. Trusevich
Russian Federation
References
1. Titov L. P, Sprindzhuk M. V. COVID-19: characteristics of the pathogen, mechanisms of natural and adaptive immune response, genetic diversity and prevalence. Vestsi NANB. Medytsynskaya seryya. 2021; 18 (4): 497—512. [(in Russian)]
2. COVID-Coronavirus Statistics. 2023. Available at: https:/ /www.worldometers.Info.
3. Belarus COVID — Coronavirus Statistics. 2023. Available at: https://www.worldometers.info.
4. Markov P. V., Ghafari M., Beer M. et al. The evolution of SARS-CoV-2. Nat. Rev. Microbiol. 2023; 21: 361—79.
5. Young A. T cells in SARS-CoV-2 infection and vaccination. Ther. Adv. Vaccines Immunother. 2022; 10:25151355221115011.
6. Yang W. T., Huang W. H., Liao T. L. et al. SARS-CoV-2 E484K Mutation Narrative Review: Epidemiology, Immune Escape, Clinical Implications, and Future Considerations. Infect. Drug Resist. 2022; 15: 373—85.
7. Mittal A., Khattri A., Verma V. Structural and antigenic variations in the spike protein of emerging SARS-CoV-2 variants. PLoSPathog. 2022; 18(2): e1010260.
8. Arora P, CossmannA., Schulz S. R. etal. Neutralisation sensitivity of the SARS-CoV-2 XBB.1 lineage. Lancet Infect. Dis. 2023; 23 (2): 14 7—8.
9. Huang Y., Yang C., Xu X. F et al. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta.Pharmacol. Sin. 2020; 41 (9): 1141—9.
10. Fleri W., Paul S., Dhanda S. K. et al. The Immune Epitope Database and Analysis Resource in Epitope Discovery and Synthetic Vaccine Design. Front. Immunol. 2017; 8: 278.
11. Reche P A., Zhang H., Glutting J. P, Reinherz E. L. EPIMHC: a curated database of MHC-binding peptides for customized computational vaccinology. Bioinformatics. 2005; 21 (9): 2140—1.
12. Titov L. Р. Medical genomics: genome organization, regulation of gene expression, variability. Vesti NANB. Meditsinskaya seriya. 2015; 3: 97—113. [(in Russian)]
13. Kopanska M., Barnas E., Blajda J. et al. Effects of SARS-CoV-2 Inflammation on Selected Organ Systems of the Human Body Int. J. Mol. Sci. 2022; 23 (8): 4178.
14. KumarB. V., Connors T J., FarberD. L. Human T cell development, localization, and function throughout life. Immunity 2018; 48(2): 202—13.
15. Sovani V. Normal bone marrow, its structure and function. Histopathology 2021; 27 (9): 349—56.
16. Elahi S. Hematopoietic responses to SARS-CoV-2 infection. CellMol. LifeSci. 2022; 79 (3): 187.
17. Bobrukevich D., Antonevich N., Goncharov A. i dr. Characteristics of the state of the immune system in patients with pneumonia associated with COVID-19. Naukaiinnovatsii. 2022; 2: 24—35. [(in Russian)]
18. Moss Р. The T cell immune response against SARS-CoV-2. Nat. Immunol. 2022; 23 (2): 186—93.
19. Shevyrev D. V., Tereshchenko V. Р., Kozlov V. A. Homeostatic proliferation: from normal to pathological. Rossiyskiy immunologicheskiy zhurnal. 2018; 21 (2): 91— 105. [(in Russian)]
20. Anderson J. J., Susser E., Arbeev K. G. etal. Telomerelength dependent T-cell clonal expansion: A model linking ageing to COVID-19 T-cell lymphopenia and mortality. EBio Medicine. 2022; 78: 103978.
21. Titov L. Р. Immunology: terminological dictionary. M.: MIA; 2008. 541 s. [(in Russian)]
22. Lastovka I. N., Ulezko E. A., Matveev V. A. Assessment of the size of the thymus gland in newborns according to ultrasound data. Problemy zdorov’ya i ekologii. 2007; 4 (14): 38—42. [(in Russian)]
23. Titov L. P, Kiril’chik E. Yu., Kanashkova T A. Features of the structure, development and functioning of the immune system of the child’s body Meditsinskie novosti. 2009; 5: 7— 16. [(in Russian)]
24. Lins M. P, Smaniotto S. Potential impact of SARS-CoV-2 infection on the thymus. Can. J. Microbiol. 2021; 67 (1): 23—8.
25. As-Suhami E. A. A., Aljafari M. A., Alkhulaifi F M. et. al. Thymus Gland: A Double Edge Sword for Coronaviruses. Vaccines (Basel). 2021; 9 (10): 1119.
26. Weinreich M. A., Hogquist K. A. Thymic emigration: when and how T cells leave home. J. Immunol. 2008; 181 (4): 2265—70.
27. Kong F, Chen C. H., Cooper M. D. Thymic function can be accurately monitored by the level of recent T cell emigrants in the circulation. Immunity. 1998; 8 (1): 97—104.
28. Rechman S., Majeed T, Ansari M. A. et al. Current scenario of COVID-19 in pediatric age group and physiology of immune and thymus response. Saudi J. Biol. Sci. 2020; 27 (10): 2567—73.
29. Rosati E., Dawds C. M., Liaskou E. et al. Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnol. 2017; 17 (1): 61.
30. Kellogg C., Equils O. The role of the thymus in COVID-19 disease severity: implications for antibody treatment and immunization. Hum. Vaccin. Immunother. 2021; 17 (3): 638—43.
31. Yap J. P, Wirasinha R. C., Chan A. et al.Indirect presentation in the thymus limits naive and regulatory T-cell differentiation by promoting deletion of self-reactive thymocytes. Immunology 2018; 154 (3): 522—32.
32. Berkan O., Kiziloglu I., Keles E. et al. Does the Thymus Index Predict COVID-19 Severity? J. Comput. Assist. Tomogr. 2023; 47 (2): 236—43.
33. Markert M. L., Devlin B. H., McCarthy E. A. Thymus transplantation. Clin. Immunol. 2010; 135 (2): 236—46.
34. Consolini R., Legitimo A., Calleri A., Milani M. Distribution of age-related thymulintitres in normal subjects through the course of life. Clin. Exp. Immunol. 2000; 121 (3): 444—7.
35. Brabre I. den, Mugwagwa T., Vrisekoop N. et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 2012; 36 (2): 288—97.
36. Maruyama S. The Functional Assessment of T cells. Methods Mol. Biol. 2018; 1868: 177—99.
37. Wang Q., Iketani S., Liu Z. et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell. 2023; 186 (2): 279—86.
38. NowillA. E., Caruso M., de Campos-Lima P O. T-cell immunity to SARS-CoV-2: what if the known best is not the optimal course for the long run? Adapting to evolving targets. Front. Immunol. 2023; 14: 1133225.
39. Santegoets S., Welters M. J. P, van der Burg S. H. Detection and functional assessment of regulatory T-cells in clinical samples. J. Immunotherapy of Cancer. 2014; 2 (3): 154.
40. Kudryavtsev I. V., Golovkin A. S., Totolyan A. A. T helper cells and their target cells in COVID-19. Infektsiyaiimmunitet. 2022; 12 (3): 409—426. [(in Russian)]
41. Bekbossynova M., Akhmaltdinova L., Dossybaeva K. et al. Central and effector memory T cells in peripheral blood of patients with interstitial pneumonia: preliminary clues from a COVID-19 study. Respir Res. 2022; 23 (1): 278.
42. Adamo S., MichlerJ., Zurbuchen Y. etal. Signature of long-lived memory CD8+ T cells in acute SARS-CoV-2 infection. Nature. 2022; 602 (7895): 148—55.
43. Tian Y., Babor M., Lane J. et al. Unique phenotypes and clonal expansions of human CD4 effector memory T cells re-expressing CD45RA. Nat. Commun. 2017; 8 (1): 1473.
44. Tavukcuoglu E., Horzum U., CagkanInkaya A. et al. Functional responsiveness of memory T cells from COVID-19 patients. Cell Immunol. 2021; 365: 104363.
45. Wang Z., Yang X., Zhong J. et al. Exposure to SARS-CoV-2 generates T-cell memory in the absence of a detectable viral infection. Nat Commun. 2021; 12 (1): 1724.
46. Kalpaskci Y., Hacibekiroglu T., Trak G. et al. Comparative evaluation of memory T cells in COVID-19 patients and the predictive role of CD4+CD8+ double positive T lymphocytes as a new marker. Rev. Assoc. Med. Bras. (1992). 2020; 66 (12): 1666—72.
47. Dhawan M., Rabaan A. A., Al Fawarch M. M. et al. Updated Insights into the T Cell-Mediated Immune Response against SARS-CoV-2: A Step towards Efficient and Reliable Vaccines. Vaccines (Basel). 2023; 11(1): 101.
48. Lafon E., Diem G., Wilting C. H. et al. Potent SARS-CoV-2-Specific T Cell Immunity and Low Anaphylatoxin Levels Correlate With Mild Disease Progression in COVID-19 Patients. Front. Immunol. 2021; 12: 684014.
49. BertolettiA., Le BertN., Tan A. T SARS-CoV-2-specific T cells in the changing landscape of the COVID-19 pandemic. Immunity. 2022; 55 (10): 1764—78.
50. Lee J. K. H., Lam G. K. L., Shin T et al. Efficacy and effectiveness of high-dose versus standard-dose influenza vaccination for older adults: a systematic review and metaanalysis. Expert. Rev. Vaccines. 2018; 17 (5): 435—43.
51. Duah M., Li L., Shen J. et al. Thymus Degeneration and Regeneration. Front. Immunol. 2021; 12: 706244.
52. Apasov S., Chen J. F, Smith P., Sitkovsky M. A(2A) receptor dependent and A(2A) receptor independent effects of extracellular adenosine on murine thymocytes in conditions of adenosine deaminase deficiency. Blood. 2000; 95 (12): 3859—67.
53. Shohat B., Joshua H. Suppressor, helper and immunoregulatory T cells in normal human blood as defined by theophylline sensitivity Thymus. 1982; 4 (6): 323—34.
54. JaffarZ. H., Sullivan P., Page C., Costello J. Low-dose theophylline modulates T-lymphocyte activation in allergen-challenged asthmatics. Eur. Respir. J. 1996; 9 (3): 456—62.
55. Montano L. M., Sommer B., Gomez-Verjan J. C. et al. Theophylline: Old Drug in a New Light, Application in COVID-19 through Computational Studies. Int. J. Mol. Sci. 2022; 23 (8): 4167.
56. Adamovich T G., Titov L. P Production of IFN-g and IL-4 by peripheral blood mononuclear cells of children with bronchial asthma treated with ribomunil and the Teotard complex and ribomunil. Problemy zdorov’ya I ekologii. 2007; (4): 17—21. [(in Russian)]
57. Sottini A., Serana F, Bertoli D. et al. Simultaneous quantification of T-cell receptor excision circles (TRECs) and К-deleting recombination excision circles (KRECs) by realtime PCR. J Vis Exp. 2014; (94): 52184.
58. Cuvelier P., Roux H., Couedel-Courteille A. et al. Protective reactive thymus hyperplasia in COVID-19 acute respiratory distress syndrome. Crit. Care. 2021; 25 (1): 4.
59. Polyakova E., Stegantseva M., Gur’yanova I. i dr. Circular molecules of T- and B-cell receptors (TREC/KREC) in the differential diagnosis of primary immunodeficiencies. Naukaiinnovatsii. 2019; 8 (198): 75—8. [(in Russian)]
60. Vasil’ev G.V., Petrova T. V., Nikiforova A. I. i dr. Immunomodulatory antitumor therapy as a cause of falsepositive results of neonatal screening for primary immunodeficiencies. Immunologiya. 2023; 44 (1): 89—92. [(in Russian)]
61. De Simone M., Rossetti G., Pagani M. Single cell T cell receptor sequencing: techniques and future challenges. Front. Immunol. 2018; 9: 1638.
62. Samir A., Bastawi R. A., Baess N. I. et al.Thymus CT-grading and rebound hyperplasia during COVID-19 infection: a CT volumetric study with multivariate linear regression analysis. Egypt. J. Radiol. Nucl. Med. 2022; 53 (1): 112.
63. Keeton R., Tincho M. B., Ngomti A. et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature. 2022; 603 (7901): 488—92.
64. Matinnez-Gallo M., Esperala J., Pujol-Borrell R. et al. Commercialized kits to assess T-cell responses against SARS-CoV-2 S peptides. A pilot study in health care workers. Med. Clin. (Barc). 2022; 159 (3): 116—23.
65. Lyagoskin V., Kargopolova P. E., Ob’edkov D. A. i dr. In-laboratory validation of «TigraTest SARS-CoV-2» — an in vitro test for the release of interferon gamma for the determination of T-lymphocytes in the blood that specifically respond to antigens of the SARS-CoV-2 virus. Infektsiya i immunitet. 2022; 12 (4): 701—13. [(in Russian)]
66. Bercovici N., Duffour M. T., Agrawal S. et al. New methods for assessing T-cell responses. Clin. Diagn. Lab. Immunol. 2000; 7 (6): 859—64.
67. Soares A., Govender L., Hughes J. et al. Novel application of Ki67 to quantify antigen-specific in vitro lymphoproliferation. J Immunol Methods. 2010; 362 (1—2): 43—50.
68. Biotechnology company. USA. 2023. Available at: https://www.miltenyibiotec.com
69. Murugesan K., Jagannathan P., Altamirano J. et al. Long-term accuracy of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interferon-г release assay and its application in household investigation. Clin. Infect. Dis. 2022; 75 (1): e314—e321.
70. Gallais F., Velay A., Nazon C. et al. Intrafamilial exposure to SARS-CoV-2 associated with cellular immune response without seroconversion, France. Emerg. Infect. Dis. 2021; 27 (1): 113—21.
71. Schrotri M., vanSchalwyk M. C. I., Post N. et al. T cell response to SARS-CoV-2 infection in humans: A systematic review. PLoS One. 2021; 16 (1): e0245532.
72. Ojeda D. S., Gansales Lopes Ledesma M. M., Pallares O. M. etal. Emergency response for evaluating SARS-CoV-2 immune status, seroprevalence and convalescent plasma in Argentina. PLoSPathog. 2021; 17 (1): e1009161.
73. Safont G., Lattore I., Villar-Hermandez R. et al. Measuring T-Cell Responses against SARS-CoV-2 Is of Utility for Disease and Vaccination Management. J. Clin. Med. 2022; 11 (17): 5103.
74. Dan J. M., Mateus J., Kabo Yu. et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021; 371 (6529): eabf4063.
75. Wang G., Wang Y., Jiang S. et al. Comprehensive analysis of TCR repertoire of COVID-19 patients in different infected stage. Genes Genomics. 2022; 44 (7): 813—22.
76. Sidney J., Peters B., Sette A. Epitope prediction and identification- adaptive T cell responses in humans. Semin Immunol. 2020; 50: 101418.
Review
For citations:
Titov L.P., Trusevich M.O. T-cell mechnisms of immunity during COVID-19: changes in the bone marrow, thymus, lymphocyte subpopulations, assessment of function. Healthcare. 2024;(5):29-45. (In Russ.)