Preview

Healthcare

Advanced search

Modern instrumental parameters and biochemical markers of early vascular aging

Abstract

One of the key risk factors for cardiovascular diseases is age. In early vascular aging syndrome age-associatedremodeling of the vascular wall develops faster than in the average population, ultimately leading to earlier onset ofcardiovascular diseases. Assessment of arterial stiffness by the velocity of pulse wave propagation in the carotid-femoralarea is one of the main methods for diagnosing early vascular aging syndrome. To assess arterial stiffness, parameters ofcentral hemodynamics are also used, such as central systolic and pulse blood pressure, augmentation index, measurementof the cardio-ankle vascular index. The review presents the results of studies of the most promising circulating biomarkersof early vascular aging syndrome: high-sensitivity С-reactive protein, interleukins, TNF-a, telomere length and telomeraseactivity, matrix metalloproteinases, growth differentiation factor-15, insulin-like growth factor-1, cystatin С, microRNA whichhave already shown high diagnostic significance and require further study. The research data on the identified new antiaging protein gene Klotho is presented. The article presents a large arsenal of modern instrumental parameters andbiochemical markers for assessing early vascular aging syndrome, the development and determination of which willimprove the diagnosis of both cardiovascular diseases and its complications.

About the Authors

A. M. Molostova
Гродненский государственный медицинский университет
Belarus


L. V. Yakubova
Гродненский государственный медицинский университет
Belarus


References

1. Sun J., Qiao Y., Zhao M. et al. Global, regional, and national burden of cardiovascular diseases in youths and young adults aged 15—39 years in 204 countries/territories, 1990—2019: a systematic analysis of Global Burden of Disease Study 2019. BMC Med. 2023; 21 (1): 222.

2. STEPS: Prevalence of risk factors for noncommunicable diseases in the Republic of Belarus, 2020. Kopengagen: Evropeyskoe regional´noe byuro VOZ; 2022. Available at: https://cdn.who.int/media/docs/default-source/ ncds/ncd-surveillance/data-reporting/belarus / belarus_steps_report_2020_ru.pdf. (accessed 15 January 2024).

3. Belous Yu. I., Yakubova L. V., Kezhun L. V. i dr. Changes in blood lipid levels in young healthy volunteers with differential consumption of palm oil. Lechebnoe delo. 2020; 3 (73): 51—5. [(in Russian)]

4. McGill H. C. Jr., McMahan C. A., Zieske A. W. et al. Association of Coronary Heart Disease Risk Factors with microscopic qualities of coronary atherosclerosis in youth. Circulation. 2000; 102 (4): 374—9.

5. Figtree G. A., Vernon S. T., Hadziosmanovic N. et al. Mortality in STEMI patients without standard modifiable risk factors: a sex-disaggregated analysis of SWEDEHEART registry data. Lancet. 2021; 397(10279): 1085—94.

6. Shrestha B., Mochon A., Poudel B. et al. Trends and Outcomes of ST-segment-elevation MI in hospitalized patients without standard modifiable cardiovascular risk factors. Curr. Probl. Cardiol. 2022; 47 (9): 101271.

7. Climie R. E., Alastruey J., Mayer C. C. et al. Vascular ageing: moving from bench towards bedside. Eur. J. Prev. Cardiol. 2023; 30(11): 1101—17.

8. Cunha P. G., Boutouyrie P., Nilsson P. M., Laurent S. Early Vascular Ageing (EVA): Definitions and Clinical Applicability. Curr. Hypertens. Rev. 2017; 13 (1): 8—15.

9. Reference Values for Arterial Stiffness´ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: «establishing normal and reference values». Eur. Heart J. 2010; 31 (19): 2338—50.

10. Nilsson P. M., Laurent S., Cunha P. G. et al. Metabolic syndrome, Arteries REsearch (MARE) Consortium. Characteristics of healthy vascular ageing in pooled population-based cohort studies: the global Metabolic syndrome and Artery REsearch Consortium. J. Hypertens. 2018; 36 (12): 2340—9.

11. Cecelja M., Chowienczyk P. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension. 2009; 54 (6): 1328—36.

12. Koivistoinen T., Lyytikainen L. P., Aatola H. et al. Pulse Wave Velocity Predicts the Progression of Blood Pressure and Development of Hypertension in Young Adults. Hypertension. 2018; 71 (3): 451—6.

13. Vlachopoulos C., Aznaouridis K., Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010; 55 (13): 1318—27.

14. Ben-Shlomo Y., Spears M., Boustred C. et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J. Am. Coll. Cardiol. 2014; 63 (7): 636—46.

15. Mancia Chairperson G., Kreutz Co-Chair R., Brunstrom M. et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J. Hypertens. 2023.

16. Vasyuk Yu. A., Ivanova S. V., Shkol´nik E. i dr. Consensus of Russian experts on the evaluation of arterial stiffness in clinical practice. Kardiovaskulyarnaya terapiya i profilaktika. 2016; 15(2): 4—19. [(in Russian)]

17. Li W. F., Huang Y. Q., Feng Y. Q. Association between central haemodynamics and risk of all-cause mortality and cardiovascular disease: a systematic review and meta- analysis. J. Hum. Hypertens. 2019; 33 (7): 531—41.

18. Shirai K., Utino J., Otsuka K., Takata M. A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J. Atheroscler. Thromb. 2006; 13 (2): 101—7.

19. Matsushita K., Ding N., Kim E. D. et al. Cardio-ankle vascular index and cardiovascular disease: Systematic review and meta-analysis of prospective and cross-sectional studies. J. Clin. Hypertens (Greenwich). 2019; 21 (1): 16—24.

20. Miyoshi T., Ito H., Shirai K. et al. CAVI-J (Prospective Multicenter Study to Evaluate Usefulness of Cardio-Ankle Vascular Index in Japan) investigators. J. Am. Heart Assoc. 2021; 10 (16): e020103.

21. Lorenz M. W., Markus H. S., Bots M. L. et al. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 2007; 115 (4): 459—67.

22. Lorenz M. W., Gao L., Ziegelbauer K. et al. Predictive value for cardiovascular events of common carotid intima media thickness and its rate of change in individuals at high cardiovascular risk — Results from the PROG-IMT collaboration. PLoS One. 2018; 13 (4): e0191172.

23. Den Ruijter H. M., Peters S. A., Anderson T. J. et al. Common carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA. 2012; 308 (8): 796—803.

24. Visseren F. L. J., Mach F., Smulders Y. M. et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021; 42 (34): 3227—37.

25. Gopcevic K. R., Gkaliagkousi E., Nemcsik J. et al. Pathophysiology of Circulating Biomarkers and Relationship With Vascular Aging: A Review of the Literature From VascAgeNet Group on Circulating Biomarkers, European Cooperation in Science and Technology Action 18216. Front. Physiol. 2021; 12: 789690.

26. Blackburn E. H. Structure and function of telomeres. Nature. 1991; 350 (6319): 569—73.

27. Muezzinler A., Zaineddin A. K., Brenner H. A systematic review of leukocyte telomere length and age in adults. Ageing Res. Rev. 2013; 12 (2): 509—19.

28. Kosmopoulos M., Chiriaco M., Stamatelopoulos K. et al. The relationship between telomere length and putative markers of vascular ageing: A systematic review and meta- analysis. Mech. Ageing Dev. 2022; 201: 111604.

29. Strazhesko I., Tkacheva O., Boytsov S. et al. Association of Insulin Resistance, Arterial Stiffness and Telomere Length in Adults Free of Cardiovascular Diseases. PLoS One. 2015; 10 (8): e0136676.

30. Franceschi C., Bonafe M., Valensin S. et al. Inflamm- aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000; 908: 244—54.

31. Johansen N. B., Vistisen D., Brunner E. J. et al. Determinants of aortic stiffness: 16-year follow-up of the Whitehall II study. PLoS One. 2012; 7 (5): e37165.

32. Desjardins M. P., Sidibe A., Fortier C. et al. Association of interleukin-6 with aortic stiffness in end-stage renal disease. J. Am. Soc. Hypertens. 2018; 12 (1): 5—13.

33. Fujita Y., Taniguchi Y., Shinkai S. et al. Secreted growth differentiation factor 15 as a potential biomarker for mitochondrial dysfunctions in aging and age-related disorders. Geriatr. Gerontol. Int. 2016; 16 Suppl. 1: 17—29.

34. Andersson C., Enserro D., Sullivan L. et al. Relations of circulating GDF-15, soluble ST2, and troponin-I concentrations with vascular function in the community: The Framingham Heart Study. Atherosclerosis. 2016; 248: 245—51.

35. Castro-Diehl C., Song R. J., Sawyer D. B. et al. Circulating growth factors and cardiac remodeling in the community: The Framingham Heart Study. Int. J. Cardiol. 2021; 329: 217—24.

36. Vlachopoulos C., Xaplanteris P., Vyssoulis G. et al. Association of serum uric acid level with aortic stiffness and arterial wave reflections in newly diagnosed, never-treated hypertension. Am. J. Hypertens. 2011; 24 (1): 33—9.

37. Rebora P., Andreano A., Triglione N. et al. Association between uric acid and pulse wave velocity in hypertensive patients and in the general population: a systematic review and meta-analysis. Blood Press. 2020; 29 (4): 220—31.

38. Deng G., Qiu Z., Li D. et al. Effects of Allopurinol on Arterial Stiffness: A Meta-Analysis of Randomized Controlled Trials. Med. Sci. Monit. 2016; 22: 1389—97.

39. Desideri G., Rajzer M., Gerritsen M. et al. Effects of intensive urate lowering therapy with febuxostat in comparison with allopurinol on pulse wave velocity in patients with gout and increased cardiovascular risk: the FORWARD study. Eur. Heart J. Cardiovasc. Pharmacother. 2022; 8 (3): 236—42.

40. De Becker B., Van De Borne P. Serum uric acid: a futile bystander in endothelial function? Blood Press. 2023; 32 (1): 2237123.

41. Kuro-o M., Matsumura Y., Aizawa H. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997; 390 (6655): 45—51.

42. Xu Y., Sun Z. Molecular basis of Klotho: from gene to function in aging. Endocr. Rev. 2015; 36 (2): 174—93.

43. Olejnik A., Franczak A., Krzywonos-Zawadzka A. et al. The Biological Role of Klotho Protein in the Development of Cardiovascular Diseases. Biomed. Res. Int. 2018; 2018: 5171945.

44. Yamamoto M., Clark J. D., Pastor J. V. et al. Regulation of oxidative stress by the anti-aging hormone klotho. J. Biol. Chem. 2005; 280 (45): 38029—34.

45. Navarro-Gonzalez J.F., Donate-Correa J., Muros de Fuentes M. et al. Reduced Klotho is associated with the presence and severity of coronary artery disease. Heart. 2014; 100 (1): 34—40.

46. Citterio L., Delli Carpini S., Lupoli S. et al. Klotho Gene in Human Salt-Sensitive Hypertension. Clin. J. Am. Soc. Nephrol. 2020; 15 (3): 375—83.

47. Yokoyama S., Oguro R., Yamamoto K. et al. A klotho gene single nucleotide polymorphism is associated with the onset of stroke and plasma klotho concentration. Aging (Albany N. Y.). 2018; 11 (1): 104—14.

48. Xu J. P., Zeng R. X., He M. H. et al. Associations Between Serum Soluble α-Klotho and the Prevalence of Specific Cardiovascular Disease. Front. Cardiovasc. Med. 2022; 9: 899307.

49. Jiang S., Wang Y., Wang Z. et al. The association of serum Klotho concentrations with hyperlipidemia prevalence and lipid levels among US adults: a cross-sectional study. BMC Public Health. 2023; 23 (1): 1645.

50. Chang K., Li Y., Qin Z. et al. Association between Serum Soluble α-Klotho and Urinary Albumin Excretion in Middle-Aged and Older US Adults: NHANES 2007—2016. J. Clin. Med. 2023; 12 (2): 637.

51. Xin C., Sun X., Li Z., Gao T. Relationship of Soluble Klotho and Early Stage of Diabetic Nephropathy: A Systematic Review and Meta-Analysis. Front. Endocrinol (Lausanne). 2022; 13: 902765.

52. Charoenngam N., Ponvilawan B., Ungprasert P. Lower circulating soluble Klotho level is associated with increased risk of all-cause mortality in chronic kidney disease patients: a systematic review and meta-analysis. Int. Urol. Nephrol. 2020; 52 (8): 1543—50.

53. Keles N., Caliskan M., Dogan B. et al. Low Serum Level of Klotho Is an Early Predictor of Atherosclerosis. Tohoku J. Exp. Med. 2015; 237 (1): 17—23.

54. Fountoulakis N., Psefteli P. M., Maltese G. et al. Reduced Levels of the Antiaging Hormone Klotho are Associated With Increased Aortic Stiffness in Diabetic Kidney Disease. Kidney Int. Rep. 2023; 8 (7): 1380—8.

55. Kim H. J., Kang E., Oh Y. K. et al. The association between soluble klotho and cardiovascular parameters in chronic kidney disease: results from the KNOW-CKD study. BMC Nephrol. 2018; 19 (1): 51.

56. Milovanova L. Y., Taranova M. V., Milovanova S. Y. et al. Cardiovascular remodeling as a result of fibroblast growth factor-23 (FGF-23)/Klotho imbalance in patients with CKD. Int. Urol. Nephrol. 2022; 54 (7): 1613—21.

57. Liang W. Y., Wang L. H., Wei J. H. et al. No significant association of serum klotho concentration with blood pressure and pulse wave velocity in a Chinese population. Sci Rep. 2021; 11 (1): 2374.


Review

For citations:


Molostova A.M., Yakubova L.V. Modern instrumental parameters and biochemical markers of early vascular aging. Healthcare. 2024;1(6):10-19. (In Russ.)

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-7218 (Print)