Preview

Healthcare

Advanced search

Prooxidant-antioxidant imbalance in patients at various stages of primary open-angle glaucoma

https://doi.org/10.65249/1027-7218-2025-11-32-38

Abstract

Objective. To study the patterns of changes in prooxidant-antioxidant imbalance in patients with primary open-angle glaucoma (POAG) at different stages of the disease.

Materials and methods. The study included 100 patients with POAG and 30 relatively healthy individuals. Patients with POAG were divided into three groups depending on the stage of the disease. The assessment of lipid peroxidation (LPO) indicators and antioxidant defense (AOD) parameters in venous blood was performed using spectrofluorometry and spectrophotometry according to standardized methods.

Results. A clear tendency towards an increase in LPO processes and disruption of the AOD with an increase in the stage of POAG was revealed. The content of dienic conjugates in plasma and erythrocytes increased from 46.4 % (p < 0.001) at stage I to 164.0 % (p < 0.001) at stages III—IV, and from 12.8 % (p = 0.011) at stage I to 55.1 % (p < 0.001) at stages III—IV, respectively, compared to control group. An increase in malondialdehyde level was observed as POAG progressed, with the greatest rise in plasma at stages III—IV, amounting to 51.9 % (p < 0.001) compared to controls. The lowest levels of α-tocopherol, retinol, and ceruloplasmin were recorded at stages III—IV, showing reductions of 13.8 % (p = 0.006), 23.5 % (p = 0.023), and 47.5 % (p < 0.001), respectively, compared to healthy individuals. The most significant decrease in reduced glutathione level was noted at stage II, with a reduction of 33.4 % (p = 0.004). Сatalase activity increased from stage I to stages III—IV by 65.5—81.2 % (p < 0.001).

Conclusion. The study revealed the presence of a prooxidant-antioxidant imbalance in POAG, the degree of which increases with increasing severity of the disease. The obtained results confirm the need for stage-oriented approaches to antioxidant therapy.

About the Authors

V. Ramanchuk
Гродненский государственный медицинский университет
Belarus


V. Zinchuk
Гродненский государственный медицинский университет
Belarus


V. Krasilnikova
Институт повышения квалификации и переподготовки кадров здравоохранения УО «Белорусский государственный медицинский университет»
Belarus


I. Gulyai
Гродненский государственный медицинский университет
Belarus


References

1. Morizane Y., Morimoto N., Fujiwara A., et al. Incidence and causes of visual impairment in Japan: the first nation-wide complete enumeration survey of newly certified visually impaired individuals. Jpn J Ophthalmol. 2019; 63(1): 26—33.

2. Schuster A.K., Erb C., Hoffmann E.M., et al. The Diagnosis and Treatment of Glaucoma. Dtsch Arztebl Int. 2020; 117(13): 225—234.

3. Hark L.A., Horowitz J.D., Gorroochurn P., et al. Manhattan vision screening and follow-up study (NYC-SIGHT): baseline results and costs of a cluster-randomized trial. Am J Ophthalmol. 2023; 251: 12—23.

4. Kroese M., Burton H. Primary open angle glaucoma. The need for a consensus case definition. J Epidemiol Community Health. 2003; 57(9): 752—754.

5. Boland M.V., Ervin A.M., Friedman D.S., et al. Comparative effectiveness of treatments for open-angle glaucoma. Ann Int Med. 2013; 158(4): 271—279.

6. Kang E.Y., Liu P.K., Wen Y.T., et al. role of oxidative stress in ocular diseases associated with retinal ganglion cells degeneration. Antioxidants (Basel). 2021; 10(12). doi: 10.3390/antiox10121948.

7. Leske M.C., Heijl A., Hyman L., et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007; 114(11): 1965—1972.

8. Wareham L.K., Liddelow S.A., Temple S., et al. Solving neurodegeneration: common mechanisms and strategies for new treatments. Mol Neurodegener. 2022; 17(1). doi: 10.1186/s13024-022-00524-0.

9. Tribble J.R., Hui F., Quintero H., et al. Neuroprotection in glaucoma: Mechanisms beyond intraocular pressure lowering. Mol Aspects Med. 2023; 92. doi: 10.1016/j.mam.2023.101193.

10. Casson R.J., Chidlow G., Crowston J.G., et al. Retinal energy metabolism in health and glaucoma. Prog Retin Eye Res. 2021; 81. doi: 10.1016/j.preteyeres.2020.100881.

11. Birich T.V., Birich T.A., Marchenko L.N., et al. Lipid peroxidation in the blood of patients with primary glaucoma. Vestnik oftalmologii. 1986; 102(1): 13—15. (in Russian)

12. Marchenko L.N. Neuroprotection in retinal and optic nerve diseases. Minsk: UP IVTs Minfina; 2003. 363. (in Russian)

13. Kamyshnikov V.S. Handbook of clinical and biochemical laboratory diagnostics. Minsk: Belarus; 2002; 1. 495. (in Russian)

14. Taylor S.L., Lamden M.P., Tappel A.L. Sensitive fluorometric method for tissue tocopherol analysis. Lipids. 1976; 11(7): 530—538.

15. Sedlak J., Lindsay R.N. Estimation of total, protein-bound, and protein sulfhydryl groups in tussue with Ellman’s reagent. Anal Biochem. 1968; 25(1): 192—205.

16. Ragino Yu.I., Voevoda M.I., Kashtanova E.V., et al. New biochemical methods for evaluation of the oxidative-antioxidative potential of low-density lipoproteins. Klinicheskaya laboratornaya diagnostika. 2005; 4: 11—15. (in Russian)

17. Koroliuk M.A., Ivanova L.I., Mayorova I.G., et al. A method of determining catalase activity. Laboratornoe delo. 1988; 1: 16—19. (in Russian)

18. Elfawy H.A., Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: etiologies and therapeutic strategies. Life Sci. 2019; 218: 165—184.

19. Taso O.V., Philippou A., Moustogiannis A., et al. Lipid peroxidation products and their role in neurodegenerative diseases. ARH. 2019; 3. doi: 10.21037/arh.2018.12.02.

20. Li F., Li S., Shi Y., et al. Glutathione: a key regulator of extracellular matrix and cell death in intervertebral disc degeneration. Mediators Inflamm. 2024; 2024. doi: 10.1155/2024/4482642.

21. Armada-Moreira A., Gomes J.I., Pina C.C., et al. Going the extra (synaptic) mile: excitotoxicity as the road toward neurodegenerative diseases. Front Cell Neurosci. 2020; 14. doi: 10.3389/fncel.2020.00090.

22. Tanito M., Kaidzu S., Takai Y., Ohira A. Association between systemic oxidative stress and visual field damage in openangle glaucoma. Sci Rep. 2016; 6. doi: 10.1038/srep25792.

23. Singh A., Kukreti R., Saso L., Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules (Basel). 2019; 24(8). doi: 10.3390/molecules24081583.

24. Pinazo-Duran M.D., Shoaie-Nia K., Zanon-Moreno V., et al. Strategies to reduce oxidative stress in glaucoma patients. Curr Neuropharmacol. 2018; 16(7): 903—918.

25. Kang E.Y., Liu P.K., Wen Y.T., et al. Role of oxidative stress in ocular diseases associated with retinal ganglion cells degeneration. Antioxidants (Basel). 2021; 10(12). doi: 10.3390/antiox10121948.

26. Nita M., Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the agerelated ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev. 2016; 2016. doi: 10.1155/2016/3164734.

27. Tezel G. Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res. 2006; 25(5): 490—513.


Review

For citations:


Ramanchuk V., Zinchuk V., Krasilnikova V., Gulyai I. Prooxidant-antioxidant imbalance in patients at various stages of primary open-angle glaucoma. Healthcare. 2025;1(11):32-38. (In Russ.) https://doi.org/10.65249/1027-7218-2025-11-32-38

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-7218 (Print)