Preview

Healthcare

Advanced search

Dynamic visual acuity: measurement, mechanisms, diagnostic importance and prospects for practical use

Abstract

Different methods for measuring dynamic visual acuity (DVA) and it dependence on the size of visual objects are described. The dependence DVA from static visual acuity (SVA), and the dependence DVA on the function of mechanisms that project the image and holding it on the retina, as well as on the processing speed of visual signals in the brain visual centers, are described. Based on the results of this study and literature data, the DVA mechanisms and reasons of its deteriorations in patients with diseases of visual and central nervous systems are discussed. Approaches to standardization of DVA measurement are proposed.

About the Authors

A. I. Kubarko
Белopyсский гoсyдаpственный медицинский yнивеpситет
Belarus


P. M. Gurinovich
Мoскoвский физикo-технический инститyт
Russian Federation


J. A. Kubarko
Медицинский центp «ЛОДЭ»
Belarus


References

1. Wu T. Y., Wang Y. X., Li X. M. Applications of dynamic visual acuity test in clinical ophthalmology. Int. J. Ophthalmol. 2021; 14 (11): 1771—78, doi:10.18240/ijo.2021.11.18.

2. Patterson J. N., Murphy A. M., Honaker J. A. Examining effects of physical exertion on the dynamic visual acuity. Test in collegiate athletes. J. Am. Acad. Audiol. 2017; 28 (1): 36—45. doi: 10.3766/jaaa.15110.

3. Gimmon Y., Schubert M. C. Vestibular testing-rotary chair and dynamic visual acuity tests. Adv. Otorhinolaryngol. 2019; 82: 39—46

4. Tian J. R., Shubayev I., Demer J. L. Dynamic visual acuity during transient and sinusoidal yaw rotation in normal and unilaterally vestibulopathic humans. Exp. Brain Res. 2001; 137 (1): 12—25

5. Zhang Y. Z., Wei X. Y., Chen Z. C. et al. Functional vestibulo-ocular reflex test.. 2019; 33 (3): 213—9. doi:10.13201/j.issn.1001-1781.2019.03.007.

6. Chen G., Zhang J., Qiao Q. et al. Advances in dynamic visual acuity test research. Front Neurol. 2023; 13: 1047876. doi: 10.3389/fneur.2022.1047876. eCollection 2022.

7. Palidis D. J., Wyder-Hodge P. A., Fooken J., Spering M. et al. Distinct eye movement patterns enhance. dynamic visual acuity. PLoS One. Available at: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC8569558/#b1. 12 (2): e0172061.

8. Kubarko A. I., Lichatchev S. A., Kubarko N. P. Vivion. Eye set and movement neuronal control mechanisms and its deteriorations in neuronal system diseases. Minsk. BSMU; 2009, 352 p. [(in Russian)]

9. Goodale M. A., Milner A. D. Separate visual pathways for perception and action. Trends Neurosci. 1992; 15 (1): 20—5.

10. Senanayake S. A., Carther-Krone T., Marotta J. J. Priming of the sander parallelogram illusion separates perception from action. Exp. Brain. Res. 2021; 239 (6): 1—14.

11. Gilaie-Dotan S., Saygin A. P., Lorenzi L. J. et al. The role of human ventral visual cortex in motion perception. Brain. 2013; 136 (Pt. 9): 2784—98.

12. Saleem A. B. Two hypothesis of visual processing for navigation in mouse. Curr. Opin. Neurobiol. 2020; 64: 70—8

13. Mithin A. A. Systen organization of visual fumctioms. 1988. M; 120 p. [(in Russian)]

14. Nassi J. J., Callaway E. M. Multiple circuits relaying primate parallel visual pathways to the middle temporal area. J. Neurosci. 2006; 26 (49): 12789—98.

15. Berman R. A., Wurtz R..H. Functional identification of a pulvinar path from superior colliculus to cortical area MT. J. Neurosci. 2010; 30 (18): 6342—54.

16. Sincich L. C., Park K. F., Wohlgemuth M. J. et al. Bypassing V1: a direct geniculate input to area MT. Nat Neurosci. 2004; 7 (10): 1123—8.

17. VerMaas J. R., Gehringer J. E., Wilson T. W. et al. Children with cerebral palsy display altered neural oscillations within the visual MT/V5 cortices. Neuroimage Clin. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/.

18. Galletti C., Fattori P. The dorsal visual stream revisited: stable circuits or or dynamic pathways? Cortex. 2018; 98: 203—17. doi: 10.1016/j.cortex.2017.01.009.

19. Cheng C., Fan L. Z., Xia X. L. et al. Rostro-caudal organization of the human posterior superior temporal sulcus revealed by connectivity profiles. Hum Brain Mapp. 2018; 39 (12): 5112—25.

20. Petit L., Pouget P. The comparative anatomy of frontal eye fields in primates. Cortex. 2019; 118: 51—64.

21. Leigh R. J., Kennard C. Using saccades as a research tool in the clinical neurosciences. Brain. 2003;7: 1—18.

22. Pitzalis S., Serra C., Sulpizio V. et al. Neural bases of self- and object-motion in a naturalistic vision. Hum. Brain. Mapp. 2020; 41 (4): 1084—1111.

23. Marquez C., Lininger M., Raab S. Establishing normative change values in visual acuity loss during the dynamic visual acuity test. Int. J. Sports Phys. Ther. 2017; 12 (2): 227—32.

24. Kubarko A. I., Lukashevich I. V. Dynamic visual acuity mechanisms analysis. Medicin. Zhurnal. 2007; 1: 55—8. [(in Russian)]

25. Rotz J. A. Method dynamic visual acuity evaluation. University News. Instrument making. 2012; 55 (6): 63—5. [(in Russian)]

26. Kubarko A. I., Kubarko N. P., Kubarko J. A. Light sensitivity in patients with demyelinating optic neuropathy in acute retrobulbar neuritis. Jurnal nevrologii i psychiatrii. 2014; 2: 40—4. [(in Russian)]

27. Haarmeier Th. Impaired analysis of moving objects due to deficient smooth pursuit eye movements.Brain. 1999; 122: 1495—505.

28. Constable P. A., Bach M., Frishman L. et al. Standard for clinical electro-oculography (3 update). Documenta Ophthalmologica. 2017; 34 (1): 1—9. doi:1007/S10633-017—9573-2.

29. Kubarko A. I., Chuprin B. P., Kubarko N. P., Kubarko J. A. System of computer testing of visual analyzer. Nauchno-prakticheskiy ezegodnik. Мinsk. 2002; 3: 195—7. [(in Russian)]

30. Kincade J. M., Abrams R. A., Astafiev S. V. et al. An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. J. Neurosci. 2005; 25 (18): 4593—604.

31. Yasuo T., Fukuda H., Ugawa Y. et al. Visualization of the information flow through human oculomotor cortical regions by transcranial magnetic stimulation. J. Neurophysiol. 1998; 80: 936—46.

32. Koenig D., Hofer H. The absolute threshold of cone vision J. Vision. 2011; 11 (1): 1—24.

33. Kubarko A. I., Firago V. A., Hotra O. Determination of colour-contrast sensitivity of the retina . Acta Physica Polonica. 2014; 125 (6): 1367—70.

34. Somjen G. Sensory coding in the mammalian nervous system. Moskva: Mir; 1975. 415 p. [(in Russian)]

35. Nakatsuka M., Ueda T., Nawa Y. et al. Effect of static visual acuity on dynamic visual acuity: a pilot study. Percept Mot Ski. 2006; 103 (1): 160—4.

36. Wang M. F., Ji X. X., Wang R. F. et al. The change of identifying dynamic optotypes after phacoemulsification combined with intraocular lens (IOL) implantation 36. Surgery in age-related cataract patients. Med. Recapitulate. 2015; 21 (20): 3797—800.

37. Wen W., Zhang P., Liu T. T. et al. A novel motion-oncolor paradigm for isolating magnocellular pathway function in preperimetric glaucoma. Invest. Ophthalmol. Sci. 2015; 56 (8): 4439—46.

38. Leigh R. J., Zee D. S. The neurology of eye movements. 3-rd ed. New York: Oxford University Press. 1999; 466 p.

39. Becker W., Fuchs A. F. Further properties of the human saccadic system: Eye movements and correction saccades with and without visual fixation points. Vision Res. 1969; 9: 1247—58.

40. Gazzaniga M. S. Cerebral specialization and interhemispheric communication. Brain. 2000; 123: 1293—326.

41. Gnezdicri V. V. Evoked brans potentials in clinical practice. 2003. Moscow: MEDpress-inform. 246 s. [(in Russian)]

42. Kubarko A. I., Kubarko N. P. Correction eye saccades in patients with multiple sclerosis. Zurnal neurologii i psychiatrii. 200; 6: 47—51. [(in Russian)]

43. Manago M. M., Schenkman M., Berliner J. et al. Gaze stabilization and dynamic visual acuity in people with multiple sclerosis. J. Vestib. Res. 2016; 6 (5—6): 469—77. doi: 10.3233/VES-160593.

44. Wang S. J., Jiang H., Gao Z.Q. et al. Clinical significance of bedside dynamic visual acuity test. Chin. J. Otorhinolaryngol. Head. Neck. Surg. 2018; 53 (12): 893—7.

45. Denison R. N., Vu A..T., Yacoub E. et al. Functional mapping of the magnocellular and parvocellular subdivisions of human LGN. Neuroimage. 2014; 102 (Pt 2): 358—69.

46. Almasieh M., Wilson A. M., Morquette B., et al. The molecular basis of retinal ganglion cell death in glaucoma. Prog. Retin. Eye Res. 2012; 31 (2): 152—81.

47. Gupta N., Ang L. C., Noel de Tilly L. et al. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br. J. Ophthalmol. 2006; 90 (6): 674—8.

48. Zhang P., Wen W., Sun X. H. et al. Selective reduction of fMRI responses to transient achromatic stimuli in the magnocellular layers of the LGN and the superficial layer of the SC of early glaucoma patients. Hum Brain Mapp. 2016; 37 (2): 558—69.

49. Pfieffer M. L., Anthamatten A., Glassford M. Assessment and treatment of dizziness and vertigo. Nurse Pract. 2019; 44 (10): 29—36.

50. Shippman S., Heiser L., Cohen K.R. et al. Dynamic visual acuity: its place in ophthalmology? Am. Orthopt. J. 2005; 55: 139—43.

51. Manago M., Schenkman M., Berliner J. et al. Gaze stabilization and dynamic visual acuity in people with multiple sclerosis. J. Vestib. Res. 2016; 26 (5—6): 469—77. doi: 10.3233/VES-160593.


Review

For citations:


Kubarko A.I., Gurinovich P.M., Kubarko J.A. Dynamic visual acuity: measurement, mechanisms, diagnostic importance and prospects for practical use. Healthcare. 2024;(1):5-19. (In Russ.)

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-7218 (Print)