Optical coherence tomography in the diagnostics of keratoconus
Abstract
Objective. To evaluate the effectiveness of optical coherence tomography in the diagnosis of keratoconus, and to establish reliable indicators for diagnosing keratoconus. Materials and methods: The study included data from 142 people (280 eyes) divided into four groups: Group 1 — 63 eyes (32 people) of patients with refractive errors; Group 2 — 181 eyes (91 people), patients with a confirmed diagnosis of grade 1—3 keratoconus (according to Amsler); Group 3 — 36 eyes (19 people), healthy volunteers without ophthalmological pathology; The 4th group represents the combined data of the 1st and 3rd groups — 99 eyes (51 people). Results and conclusions. ROC-analysis data of the most reliable indicators: central corneal thickness (CCT), minimum corneal thickness (MCT), difference in pachymetry (DP) and difference in the epithelium (DE). Threshold level of CCT 515 µm with AUC ROC-curve 0,862 (95 % CI (0.816—0.900); p < 0.0001), Se = 79.0 % and Sp = 78.8 %, threshold level of MCT 483 µm with AUC ROC curve 0,922 (95 % CI (0.884—0.951); p < 0.0001), Se = 75.1 % and Sp = 90.9 %. The cut-off point of the difference indicators was as follows: DP 15 μm AUC ROC-curve 0,936 (95 % CI (0.901—0.962); p < 0.0001), Se = 88.4 % and Sp = 89.9 %, DE 5 µm AUC ROC-curve 0.893 (95 % CI (0.851—0.927); p < 0.0001), Se = 79.56 % and Sp = 89.86 %. Optical coherence tomography is a highly informative, reliable and accurate method for examining the cornea and diagnosing keratoconus. The most reliable and accurate indicators for diagnosing keratoconus using optical coherence tomography are: CCT ≤ 512 µm, MCT ≤ 483 µm, DP > 18 µm and DE > 5 µm. Exceeding these threshold levels will indicate that the patient is diagnosed with keratoconus. The proposed method for diagnosing keratoconus using optical coherence tomography can be widely used by ophthalmologists in the clinical practice of healthcare institutions providing care in the field of ophthalmology.
About the Authors
L. A. Stolyarova,Belarus
T. A. Imshanetskaya,
Belarus
D. E. Abelski
Belarus
References
1. . Rabinowitz, Y. S. Keratoconus / Y. S. Rabinowitz // Surv. of Ophthalmol. — 1998. — Vol. 42, № 4. — P. 297—319.
2. Wollensak, G. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus / G. Wollensak, E. Spoerl, T. Seiler // Am. J. of Ophthalmol. — 2003. — Vol. 135, № 5. — P. 620—607.
3. Randleman, J. B. Corneal cross-linking / J. B. Randleman, S. S. Khandelwal, F. Hafezi // Surv. of Ophthalmol. — 2015. — Vol. 60, № 6. — P. 509—523.
4. Keratoconus and corneal ectasia after LASIK / P. S. Binder [et al.] // J. of Cataract and Refract. Surg. — 2005. — Vol. 31, № 11. — P. 2035—2038.
5. Эктазии роговицы. Избранные лекции / М. М. Бикбов [и др.] ; Уфим. науч.-исслед. ин-т глаз. болезней. — М. : Апрель, 2018. — 123 с.
6. Rate of ectasia and incidence of irregular topography in patients with unidentified preoperative risk factors undergoing femtosecond laser-assisted LASIK / M. Moshirfar [et al.] // Clin. Ophthalmol. — 2014. — Vol. 8. — P. 35—42.
7. Incidence of Keratoconus in Refractive Surgery Population of Vojvodina — Single Center Study / N. Bejdic [et al.] // Mater. Sociomed. — 2020. — Vol. 32, № 1. — P. 46—49.
8. Global consensus on keratoconus and ectatic diseases / J. A. Gomes [et al.] // Cornea. — 2015. — Vol. 34, № 4. — P. 359—369.
9. Distinguishing Highly Asymmetric Keratoconus Eyes Using Combined Scheimpflug and Spectral-Domain OCT Analysis / E. S. Hwang [et al.] // Ophthalmology. — 2018. — Vol. 125, № 12. — P. 1862—1871.
10. Evaluating keratoconus progression prior to crosslinking: maximum keratometry vs the ABCD grading system / R. Vinciguerra [et al.] // J. of Cataract and Refract. Surg. — 2021. — Vol. 47, № 1. — P. 33—39.
11. Repeatability of zone averages compared to single- point measurements of maximal curvature in keratoconus / L. Asroui [et al.] // Am. J. of Ophthalmol. — 2021. — Vol. 221. — P. 226—234.
12. Combined biomechanical and tomographic keratoconus staging: Adding a biomechanical parameter to the ABCD keratoconus staging system / E. Flockerzi [et al.] // Acta Ophthalmol. — 2022. — Vol. 100, № 5. — P. e1135—e1142.
13. Correlation of the Corvis Biomechanical Factor with tomographic parameters in keratoconus / E. Flockerzi [et al.] // J. of Cataract and Refract. Surg. — 2022. — Vol. 48, № 2. — P. 215—221.
14. Kanellopoulos, A. J. In vivo three-dimensional corneal epithelium imaging in normal eyes by anterior-segment optical coherence tomography: a clinical reference study / A. J. Kanellopoulos, G. Asimellis // Cornea. — 2013. — Vol. 32, № 11. — P. 1493—1948.
15. SD-OCT analysis of regional epithelial thickness profiles in keratoconus, postoperative corneal ectasia, and normal eyes / K. M. Rocha [et al.] // J. of Refract. Surg. — 2013. — Vol. 29, № 3. — P. 173—179.
16. Assessment of Corneal Epithelial Thickness in Asymmetric Keratoconic Eyes and Normal Eyes Using Fourier Domain Optical Coherence Tomography [Electronic resource] / S. Catalan [et al.] // J. of Ophthalmol. — 2016. — Vol. 2016. — Mode of access: https://onlinelibrary.wiley.com/doi/10.1155/2016/5697343. — Date of access: 06.08.2024.
17. Corneal epithelial thickness mapping by Fourier- domain optical coherence tomography in normal and keratoconic eyes / Y. Li [et al.] // Ophthalmology. — 2012. — Vol. 119, № 12. — P. 2425—2433.
18. Reinstein, D. Z. Corneal epithelial thickness profile in the diagnosis of keratoconus / D. Z. Reinstein, T. J. Archer, M. Gobbe // J. of Refract. Surg. — 2009. — Vol. 25, № 7. — P. 604—610.
19. Corneal epithelial thickness mapping using Fourier-domain optical coherence tomography for detection of form fruste keratoconus / C. Temstet [et al.] // J. of Cataract and Refract. Surg. — 2015. — Vol. 41, № 4. — P. 812—820.
20. Subclinical keratoconus detection by pattern analysis of corneal and epithelial thickness maps with optical coherence tomography / Y. Li [et al.] // J. of Cataract and Refract. Surg. — 2016. — Vol. 42, № 2. — P. 284—295.
21. Kanellopoulos, A. J. OCT corneal epithelial topographic asymmetry as a sensitive diagnostic tool for early and advancing keratoconus / A. J. Kanellopoulos, G. Asimellis // Clin. Ophthalmol. — 2014. — Vol. 8. — P. 2277—2287.
22. Столярова, Л. А. Картирование эпителия роговицы в норме и при кератоконусе с применением оптической когерентной томографии / Л. А. Столярова, Т. А. Имшенецкая, Д. Е. Абельский // Здравоохранение. — 2023. — № 7. — С. 63—68.
23. Epithelial, stromal, and total corneal thickness in keratoconus: three-dimensional display with artemis very- high frequency digital ultrasound / D. Z. Reinstein [et al.] // J. of Refract. Surg. — 2010. — Vol. 26, № 4. — P. 259—271.
24. Corneal Epithelial Thickness Mapping in the Diagnosis of Ocular Surface Disorders Involving the Corneal Epithelium: A Comparative Study / A. Levy [et al.] // Cornea. — 2022. — Vol. 41, № 11. — P. 1353—1361.
25. Subclinical keratoconus detection by pattern analysis of corneal and epithelial thickness maps with optical coherence tomography / Y. Li [et al.] // J. of Cataract and Refract. Surg. — 2016. — Vol. 42, № 2. — P. 284—295.
26. A Coincident Thinning Index for Keratoconus Identification Using OCT Pachymetry and Epithelial Thickness Maps / E. Pavlatos [et al.] // J. of Refract. Surg. — 2020. — Vol. 36, № 11. — P. 757—765.
27. New keratoconus staging system based on OCT / N. J. Lu [et al.] // J. of Cataract and Refract. Surg. — 2023. — Vol. 49, № 11. — P. 1098—1105.
Review
For citations:
Stolyarova, L.A., Imshanetskaya, T.A., Abelski D.E. Optical coherence tomography in the diagnostics of keratoconus. Healthcare. 2024;(9):10-18. (In Russ.)